Inform Supply Chain
Decisions without
Complex Calculations






Traditional Forecasting Tools

Current clinical supply forecasting tools were not developed to adapt to the increasingly complex world of clinical trials, with unpredictable enrollment and study design changes.

 

Excel, the industry standard, is easy-to-use however it is slow, labor-intensive, at risk of human error and not automated. Commercial tools are incredibly costly and complex, requiring outsourcing to consultants or relying on supply manager’s knowledge in statistical algorithms.

 

There is an industry need for an improved solution.

 






Early-Phase Feasibility Planning

Early-Stage Planning (24 – 12 months to study start)

 

Best practice, in an early stage of protocol development, the supply chain function is consulted for assessments on supply capabilities. These are typically high-level feasibility and risk assessments and often requires multiple What-If scenarios. The clinical supply planner (CSP) seeks input from clinical operations to understand critical study assumptions such as number of patients, treatment schedule, number of sites, countries, enrollment plan, etc. Combined with product characteristics and supply network assumptions, the CSP builds a high-level model and calculates rough-cut product volumes overtime. As margin of error on the assumptions at this stage are generally high, an overage of 50% and often higher is added in the feedback to clinical operations and manufacturing.

Download Our Whitepaper

Site Forecasting – Enabled by Confidence Dials

Informing Forecasting and Resupply Decisions Based on Business Needs Rather than Complex Calculations

Approaching Study Start-Up (<1 yr to study start)

Getting closer to study start, the CSP needs to start planning comparator sourcing, Investigational Medicinal Product (IMP) manufacturing and distribution. A model needs to be built at the appropriate detailed level to assess supply needs overtime at site, depot network and manufacturing levels. At this stage, it is critical to agree on a detailed set of assumptions to build the demand forecasting model and a matching supply plan. The complexity of the study determines the complexity of the model including but not limited to the following variables:

Study Design Variables:

  • Open label versus blinded?
  • Dose finding cohort studies?
  • Fixed dosing or weight-based / dimensional-based dosing?
  • Result driven titration?
  • Fixed number of cycles or till disease progression dosing?

Supply Variables:

  • What are network lead-times?
  • Any batch size limitations, either minimum or maximum sizes?
  • Is the product temperature, light or humidity sensitive or hazardous material?
  • Are you facing short expiry dates?
  • What are your storage capabilities in your distribution network and sites?
  • Cost of IMP, cost of comparators, cost of supply chain network, cost of scrap?

 

The CSP is expected to define how much inventory needs to be held at site level, at depot network level and at central storage level taking all these variables into account. The added challenge that is demand is extremely unpredictable.

Challenges in Clinical Supply Forecasting – Site Level

Traditionally, buffer levels (re-supply triggers) are static and are typically defined manually during the specification process. Values are input (into whatever tool you are using) and you hope for the best. This does not account for unexpected or unknown demand or current enrollment rates, but rather based on expected enrollment. This presents challenges to supply managers to achieve accurate forecasts and leads to wasted supply from overly conservative forecasts.

4g-table

Stop Relying on Complex Calculations to Make Business Critical Decisions

4G Clinical’s clinical supply forecasting calculates the total demand for sites and depots by combining buffer levels, enabled by dials, with dynamically updated demand for existing patients. 

 

The system displays the demand for each site so you have complete transparency. Also, the trigger level per site is clear, so you know that when a site’s current available inventory falls below that number of kits, a shipment request will be triggered. And you can control the size and frequency of shipments per enrollment group using the long window, again with visibility per site so you can see exactly how big the site’s next shipment will be. 

Here is How it Works

Buffer Levels for Unknown Patients

This is the greatest variable. You don’t know how many or where patients will enroll, so you need to balance your supply constraints (available drug, expense) against your assumed demand (random bursts of enrollment, steady enrollment, or a trickle). The confidence dial allows you to find that balance, and see the resulting buffer levels at your sites. 

 

With 4G, the supply manager has full transparency at the site level and control over what trigger levels are used. To understand how, download our whitepaper on Site Forecasting.

forecasting-buffer-automation

Aggregate Demand Planning to Compound Level

Given the current limitation of supply tools, Clinical Supply Managers (CSMs) focus primarily at the study-level so there is little to no time spent coordinating demand over time. Aggregation to the compound level is critical to make the right decisions, especially when multiple CSMs manage studies using the same drug product.

 

Bottom Line: End-to-end clinical supply planning is critical to the success of the business, and tools are needed that enable the CSM to forecast based on available information to enable decisions from early-stage feasibility planning, 1–3 years ahead of study start, all the way through study completion.

 






End-to-End Clinical Supply Chain Planning

Supply Chain Planning is the process of coordinating assets to optimize the delivery of goods, services and information from supplier to customer, balancing supply and demand. The integrated Supply Chain Planning model includes a hierarchy of planning cycles which aggregate up and down between operational, business and strategic planning. Each of these cycles have their own focus and purpose.

 

 






Download Our Whitepaper

Clinical Supply Planning Optimization

Addressing Gaps in People, Process and Technology to Drive Supply Chain Efficiencies

Industry Need for an Improved Solution

At 4G Clinical, we believe Clinical Supply Managers (CSMs) should have full transparency and control over supply decisions without having a Ph.D. in math or relying on expensive consultants. That’s why we have revolutionized site and depot forecasting through intuitive confidence dials with a fully integrated RTSM/supply forecasting engine.

We aren’t stopping there. We understand the need for a tool to aggregate between the levels of operational, business supply chain and strategic planning – that adapts to the increasingly complex world of clinical trials.

4G Clinical

Contact Us to Start a Conversation

Additional Resources

site-image

4 Ways To Get Involved In Clinical Trials Day

Clinical Trials Day is an annual event honoring the clinical trial community, the professionals working in research and the impact of medical advancement.

 

Site-Centric Clinical SupplyStrategy Optimization

Site-Centric Clinical SupplyStrategy Optimization

Tips and Tools to Master Site-Centric Strategy for Clinical Supply Management

jp-dia

Evolving Clinical Supply Forecasting Strategies to Drive Supply Chain Efficiency

A Presentation by Jan Pieter Kappelle

during DIA 2019